

Wonderful World of Technology March 22, 2018

Metabolomics, a rapidly evolving contributor to precision medicine, and how to do it

Stephen Barnes, PhD

Professor of Pharmacology & Toxicology

Director, Targeted Metabolomics and Proteomics Laboratory

UAB

To be posted at http://tmpl.uab.edu

See also http://www.uab.edu/proteomics/massspec/classes/schedule.php

Synopsis

- Why has the metabolome (and metabolomics) become so important?
- What is the metabolome?
- How do I do a metabolomics experiment?
- What platform can I use?
- How do I analyze the data?
- Can I integrate metabolomics data with other -omics data?

So, what is the metabolome?

In sudden disgust, the three lionesses realized they had killed a tofudebeest—one of the Serengeti's obnoxious health antelopes.

Be kind to your "cat"

Vet. Pathol. 25:48-57 (1988)

Veno-occlusive Disease of the Liver in Captive Cheetah

The main hepatic lesion was seen in 60% of the sexually mature cheetah (out of 126 captive animals). Observed in 1 year olds, but got worse with age and led to liver failure. Came from supplementation of the diet with soy protein.

Cats are exquisitely sensitive to aspirin and tylenol

- The defect is in UGT1A6 which has become a pseudogene – the WT form glucuronidates phenols
 - Cats are hypercarnivores
 - Not exposed to modern drugs or plants in which there are substantial amounts of phenols
 - o Victims of "Use it or lose it"
 - o Diet-driven evolution
- Mutations in exon 1
 - Stop codons at bp 274-276 and 379-381 (>10 MYA)
- UGT1A1 that glucuronidates bilirubin is unaffected

Measuring the metabolome

Radio-GC analysis metabolomics in its infancy

Radio gas-liquid chromatography with digitization of collected data

Developed this for my PhD work (1967-1970) to study glucose metabolism in acellular slime mold, *Physarum* polycephalum

Modern metabolomics

BS1 Barnes, Stephen, 8/21/2017

HPLC

Its principle

 Martin and Synge (1941).. "the smallest HETP (height equivalent to a theoretical plate) should be obtainable by using very small particles and a high pressure difference across the length of the column."

It has several advantages over GC

- Not necessary for the biochemical to go into the gas phase prior to separation
- The stationary phase can be modified to many different chemistries
- The mobile phase (a liquid) is essentially non-compressible
 - Linear flow velocity is the same at the top and bottom of the column

One big disadvantage

 Smaller particles => smaller HETP & better efficiency, but => greater back pressure

UPLC operates at 15,000 psi

Open tubular nanoLC?

• Can engineering coat the walls of an extended nano-fluidics network (reproducibly!!)

Mass analyzer of choice for untargeted metabolomics

Quadrupole-orthogonal time-of-flight (Q-TOF)

Agilent 6500

Waters Synapt G2/HMDS

Bruker

Sciex TripleTOF 6600

Current models have 40-80,000 mass resolution and 1-3 ppm mass accuracy

Nuclear Magnetic Resonance

The UK National Phenome Center, LC-MS labs

UAB capabilities in metabolomics

SCIEX 5600 TripleTOF with Eksigent nanoLC Research

TMPL mass spec lab MCLM 459/427 Stephen Barnes, Directo

Stephen Barnes, Director 205-934-7117/3462

SCIEX 6500 Qtrap with SelexION

Agilent 6530 QTOF??? Clinical

Central Alabama NMR facility Chemistry Bdg William Placzek, PhD, Director Chad Petit, PhD 205-934-2465

NIH Common Fund Metabolomics Program

Examples of metabolomics applications

Results of the study Table 2. Pathways under-represented among patients in cohort 1 **Pathway** Overlap **Pathway** Stoll_neg_1 Negatively charged ions Stoll_neg_2 Glycosphingolipid biosynthesis-7 0.00091 ganglioseries Tryptophan metabolism 13 0.00106 46 Component2 (12.7%) Glycosphingolipid biosynthesis— 0.00122 3 globoseries Glycosph 0.00125 Positively ch 5-OH Trp 0.0038 Tryptoph Xenobioti 0.00544 -10 -15 Tryptophan is the source of ligands for the aryl Component1 (24%) hydrocarbon receptor **3D-Partial Least Squares Discriminant Analysis** Stoll et al. Genes and Immunity (2016)

Future: the metabolome of a patient

- Metabolomics on urine/plasma/serum can assess:
 - From the pattern of human (and perhaps microbial) metabolites, how does the patient's metabolome change during different stages of their disease process (acute and recovery)
- Medications
 - Are they taking their medication and is it the correct medication?
 - What other medications are they taking (prescribed, antibiotics, OTC, other)?
 - What beverage did they drink last?
 - Are they consuming unusual foods/dietary supplements?
- What is the subject's metabolic age?

Advanced metabolomics

Single cell analysis – Peter Nemes, PhD (U. Maryland)

http://www.uab.edu/proteomics/metabolomics/workshop/2017/videos/nemes1 day2.html

The iKnife – precision surgery (metabolomics) on the operating table – Mr. James Kinross, PhD, FRCS (Imperial College, London)

 $\underline{http://www.uab.edu/proteomics/metabolomics/workshop/2016/videos/kinross_day2.html}$

Tissue imaging metabolomics – Janusz Kabarowski, PhD (UAB)

http://www.uab.edu/proteomics/metabolomics/workshop/2017/videos/kabarowski day4.html

Isotope ratio outlier analysis to facilitate identification and reproducibility in metabolomics

This reagent is added to all samples – allows high quality QA/QC

Growing yeast on 95% ¹³C-glucose leads to all metabolites with this distinct isotope signature and no ¹²C signal

Key issues in metabolomics

- Design the experiment well
 - · Discuss with a statistician before starting
- Collect samples as best you can better fresh
 - · Ideally, have no hemolysis in blood samples
 - Tissue samples should be frozen at -80°C ASAP
 - In animal experiments, flush the tissue to be excised with ice-cold PBS, then freeze clamp
 - For cells, decant medium, flush dish with ice-cold PBS to remove extracellular components (10 s), and then add methanol cooled in dry ice
- Some samples will have already been collected
 - Learn as much as you can about how the sample was handled and stored

Key issues in metabolomics-2

Numbers of samples per group (to develop hypotheses)

Cells 3-5Mice/rats 10-12

• Patients 20-25 (controlled study)

• Patients 100-500 (Epidemiologic or uncontrolled study)

- The numbers needed to test hypotheses depend on the variance observed in the preliminary study (work with a statistician to evaluate this)
 - Stan Hazen, discovering trimethylamine N-oxide in patients with adverse cardiovascular risk, chose a wide range of risk and carefully matched the risk patients with healthy controls (avoid antibiotics and other medications)
 - His initial study had 50 patients and controls a validation study had 25 per group

Wang et al. Nature 472: 57-63 (2011)

Key issues in metabolomics-3

- How much will it cost?
 - A standard approach is to (1) extract the biological material, (2) carry out nanoLC-MSMS (negative and positive ions) and (3) process the data

Extraction

\$12.50 per sample

Nano-LC-MSMS

\$200 per sample

Data analysis

\$400 per study

Examples

- 2 groups of cells (n=5)
 - 2x5x\$12.50 + 10x\$200 + \$400 = \$2,525
- 2 groups of animals (n=10)
 - 2x10x\$12.50 + 20x\$200 + \$400 = \$4.650
- 2 groups of patients (n=25)
 - 2x20x\$12.50 + 50x\$200 + \$400 = \$10,525

Summary

- Metabolomics (integrated metabolism and chemistry of living cells)
 has had a long history and depends on the ability to separate,
 recognize and quantify individual components
 - Its development has depended on engineering and micro/nano system innovations as well as computational development
- Metabolomics is an important aspect of the overall research on the functions that control life (along with other –omics research) and is an important adjunct to current precision medicine
- UAB is building a considerable experience in metabolomics –
 analytical resources have moderate capacity need to be expanded

Acknowledgements

- AT (Tony) James
- Sir Ernst Boris Chain
- Keith RL Mansford, PhD
- · Alan Hofmann, MD
- Clinton J Grubbs, PhD
- Jeevan Prasain, PhD
- Lalita Shevde-Samant, PhD
- Matthew Stoll, MD, PhD

Grant support R01 CA138850 R01 CA155638 R25 GM103798 P30 DK079337 S10 RR027822

Landon Wilson

Taylor Berryhill

Mikako Kawai

Thank you - Questions?
